$$
\begin{aligned}
& \text { Ex Scee } k[x, y] /\left(x^{2}, x_{y}, y^{2}\right) \\
& m=(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{lc} \times \times \mu^{2} / m^{2} \rightarrow\left(k(x) n^{2} / m^{3}\right) /\left(n^{2} / m^{2}\right)
\end{aligned}
$$

Er $\quad \mathbb{A}_{k}^{\infty}=\operatorname{Spce} k\left[x_{1}, x_{2}, x_{3} \ldots\right]$
Not Noetherian or even lore l_{2} Noek

Prof X is locally Noutherion if and unl,
${ }_{i} G V \quad U=\operatorname{Sice} A \subset X$ open affin,
A is a Noetherian ring. In particuler, Soer A is a Noutherian schene if and only ${ }_{16}$ A is Noetherion
Prué e obvious
Sugpose X luc. Noeth, Sece A cX

$$
X=U \operatorname{secc} B_{c}, B_{c} \quad N_{0} \text { th }
$$

$$
\sum^{\imath} \rho(f)=\sec \left(B_{l}\right)_{f}
$$

$\therefore \operatorname{Sece} A$ can be comen Spec Apectra of Nouth rigs.

$$
\begin{aligned}
& \operatorname{Spc} A=X \\
& \longleftarrow V=D(E), f \in A \\
& \mathcal{N}=\rho_{\beta c c \beta} \\
& \text { B North } \\
& \operatorname{Secec} B \rightarrow \operatorname{Spec}_{\mathrm{p}} \ldots \mathrm{f}_{\mathrm{c}} A \longrightarrow B, \quad \bar{f} \in B \text { image of } \\
& A_{f} \simeq B-\text { North }
\end{aligned}
$$

\therefore X con be corned with opens Spec Af f with A_{f}
X $q . e . \longrightarrow c a n$ cove with fin itch man $\operatorname{Secec}_{f,}, \ldots \operatorname{Secec} A_{f} r$

$$
\left.x=D\left(f_{1}\right) \nu_{\sim}=\nu\right)\left(f_{r}\right)
$$

$$
\left(f_{1}, \ldots, f_{r}\right)=(1) \quad A_{f_{L}} \text { Nouth }
$$

Lemme $n \in A$ ideel $Q_{i}: A \rightarrow A_{C_{i}}$, then

$$
\Omega=\bigcap_{c=1} a_{l}^{-1} \frac{\left(a_{2}(a) \cdot A_{c_{2}}\right)}{n_{i} \subset A_{t_{i}}}
$$

PE: © cluer
$16 b \in \bigcap \sum_{c=1}^{-1}\left(a_{2}(\Omega) \cdot A_{c_{c}}\right), a_{c}(b)=\frac{b_{1}}{1} \cdot \frac{a_{c}}{f_{c}} a_{c} \cdot a n$

$$
\text { WLOG } n=n_{1}=\ldots=n_{r}
$$

Jm $\quad f_{c}^{m_{c}}\left(f_{c}^{n} b-a_{c}\right)=0$
WLOG

$$
\text { II } f_{l}^{m+1} b f_{l}^{m} G_{i}<G v
$$

Put $N=n \in n, \quad h \in v e \quad f_{c}^{N} b \in \Omega, c=c, \ldots, r$

Now grum A North. Lek $a_{1} \subset \Omega_{2} \subset \Omega_{3} \subset \ldots$ D

$$
\Longrightarrow Q_{c}\left(n_{1}\right) \cdot A_{f_{c}} \subset Q_{c}\left(n_{2}\right) \cdot A_{f_{c}} \subset Q_{c}\left(n_{3}\right) \cdot A_{f} c
$$

$$
\begin{aligned}
& \text { Erentu.ll) for } \left.) \frac{Z M}{M} \geqslant\right)_{6} \quad a_{c}\left(\Omega_{j}\right) \cdot A_{f_{l}}=Q_{l}\left(\Omega_{j+1}\right) \cdot A_{f}=\cdots \\
& \text { WLOG sam } M \text { for all } l
\end{aligned}
$$

$$
\begin{aligned}
& (1)=\left(f_{1}, \ldots, f_{r}\right) \leftrightarrow D\left(f_{2}\right) \operatorname{covin} X \\
& (u)=\left(f_{1} N, \ldots . f_{r}^{N}\right) \leftrightarrow D\left(f_{1}^{N}\right) \\
& l=\sum c_{L} f_{c}^{N} \\
& c_{2} \in A \\
& b_{5}=\left\{c_{2} t_{2} b_{b} e^{N}\right.
\end{aligned}
$$

Deb $f: X \rightarrow Y$ locolly of fincte type if Y can be covered by open wffios $V_{l}=\operatorname{spec} B_{i}$ s.t. $f^{-\langle }\left(V_{i}\right.$ corued $b y$ upen aftere, UGi Sect Aij s.G
$A_{c)}$ is a finctily genercted B_{l} - alscbre
f is of finite dyp if in cidition eich $f^{-1}\left(V_{l}\right) \quad$ can be corral by finitelymany $\left(U_{l}\right)$
$A_{i j} U_{(j)} \div \operatorname{Sece} A_{()} \longrightarrow$
B_{L}

$$
S_{p a} D_{L}=V_{l} \longrightarrow
$$

Def E, X, Y is a finite morphisa
If \exists coruly of Y by open attunes

$$
\begin{aligned}
& V_{c}=S_{b c c} B_{c} \text { sql } \\
& \text { - } f^{-1}\left(V_{c}\right) \text { is affine, } \simeq \operatorname{Spce} A_{c} \\
& \text { - } A_{C} \text { is finite as a } B_{C}-\operatorname{modnc}
\end{aligned}
$$

Remark: like the locally Noeth cere, these definitions ane equivalent to requiring that these propertic) hold for all open affine subset. See $[H]$ Ex IT 2.3 .1 - $\mathbb{I} 2.3 .4$
$\left[x s: x: \mathbb{A}_{k}^{6} \Perp \mathbb{A}_{k}^{\prime} \mathbb{L} \mathbb{A}_{k}^{2} \underline{U}=\right.$
loc. Noeth, not Noeth $X \rightarrow$ Srce k
lucally fincte tyac, not fincte digpe

$$
\begin{aligned}
& \mathbb{A}_{k}^{\prime} \longrightarrow \mathbb{A}_{k}^{\prime} \\
& x \text { ~ } y=x^{2} \\
& \text { fincte fivter, } \\
& k(y)-k c_{x y} \\
& k[x]=k(y) \cdot 1+k(y] x \quad{ }_{n}(6 \\
& A_{K N}^{2}-0 C^{c} / A^{2} \\
& \text { finite type, } \\
& \text { not fincte } \\
& \left(s, 1(x), n(n)=i_{i}^{\prime}\left(\lambda^{v}\right)\right.
\end{aligned}
$$

Mofc about closed subschame
X scheme Y $\subset X$ closed. Usuolly Y has many closed subschane structurel

$$
E x \quad X=\mathbb{N}_{k}^{2} \quad Y=\{0\} \quad m=(x, y)
$$

$$
\begin{aligned}
& \operatorname{sece} x(x, p) /(x, y)<\operatorname{spce} k[x, y) / m^{2} \\
& \begin{array}{l}
\left.k[x, y] \longrightarrow k(x, y\} /\left(x^{2}, x y, y^{2}\right) \longrightarrow k(x, y) /\left(y, x^{3}\right) \longrightarrow k i x, y ? /(x, y)\right)
\end{array}
\end{aligned}
$$

"Smollist"

In general Y has a canoricel "smallat", subscerme structue, the reduced induced closed subschene structur.

- $X=$ Spee affar, Y CX cloied

Resucel inducel stradur defined by a

- Cover X by apen áfines
$U_{c}=\sec B_{l}$
give $Y \cap u_{C} \subset U_{L}$ reduced inducul strectar Muot show
- Reduced inducer) on $\forall \overparen{\cap} u_{L} \subset u_{c}$, are issmorphic on Y a $u_{c} \sim l_{j}$
* These isomorphesns are compadible on triple intusections

By now-standaid techniques for comparis open afhes, suffices) to show:

$$
U=\operatorname{Sec} A, f \in A \text {, }
$$

reducel induces structure on Y U frim A agres with reducet induces on $Y \cap \cup$ from A_{A} Necr anl, comper ikel,

$$
\begin{aligned}
& \text { - } q=\bigcap_{g} g \Longrightarrow \quad \Omega A_{f}=\cap \\
& A \text { ? } \mathrm{fex}_{n} 4 \\
& A_{f}{ }^{\circ} \text { of } \in Y n V \\
& \left(S_{e x} A(\Omega) \| \sqrt{2} S_{f=c} A d \Omega A_{f}\right. \\
& A>8 \neq 1 \\
& S_{p e=} A_{f}
\end{aligned}
$$

Dimension
X schene $\operatorname{dim} X$ is its demensos as a tor spece $=\sup \left\{n \mid \exists X_{0} \subseteq X_{1} \subseteq \ldots s X_{n}\right.$
X_{c} distinct irced clured
In particale. $\operatorname{dim} \operatorname{Secec} A=\operatorname{din} A \quad($ Krull dinersace $)$ if $Z \subset X$ irres + closed

$$
\left.\operatorname{cod} \operatorname{dm}(z, x)=\sin _{n}|n| z=z_{n} c z_{1}, \ldots z_{n}\right\}
$$

If $Y \subset X$ closed

$$
\operatorname{cotim}^{(Y, X)}=\underset{\substack{\inf \\ Z \subset Y \\ \operatorname{urcs}}}{ }
$$

$$
\ln A_{k}^{2} \quad \operatorname{ain}\left(\{0), / A_{\mu}^{L}\right)=2 \quad \operatorname{cotin}\left(1, A_{p}^{t}, l \cot \operatorname{con}\left(Y, A_{p}^{2}\right)\right)
$$

[11] II. 4 Separated and Proper Norphosme

$$
f: X \rightarrow Y
$$

diagond mochum $A: X-1 \times y$
characterizod by $\quad P_{1} \cup A=P_{2} \cup A=1 d y$

Dre: f is scparated if Δ is a closed immerion

Prop Mocphosms of affine schemes are separated
Pf: $\quad f_{i} \operatorname{Spec}_{a} B \rightarrow \operatorname{Secc} A$

$$
\begin{aligned}
& f_{2} \operatorname{Spec}_{11} B \rightarrow \operatorname{Sec}_{A} A \\
& X \rightarrow X{ }_{y} X=\operatorname{S\rho ec}\left(B \infty_{A} B\right)
\end{aligned}
$$

Ex /Ak with origin doubled is not separetep Over

$X=\bigcup_{i, j=1,2} U_{c} x U$, glued by identity of
$G \Delta\left(u_{1}\right)$
$\Delta\left(x^{\prime}\right.$ not closed $\quad u_{1} x u_{2} \approx \mathbb{A}^{2} \quad S(x) \cap u_{1} u_{2}=$
I not closed traverses

This example illustritess
$f: X \rightarrow Y$ separated $i f f \quad A(X) \subset X \pm X$ closed
$P(. \rightarrow$ elear
\longleftarrow must ched

$$
\begin{aligned}
& \text { - } X \xrightarrow{1} s(X) d X \times \text { homeo } \\
& \text { - } s^{t} \cdot 0_{x=x} \longrightarrow s_{x} O_{x} \operatorname{sur} j
\end{aligned}
$$

For $1^{\frac{2 x}{-}}$ point, hem want. inveres Surgectivity w local; restrual to athu

Recell nution ofe valuation cing
R int. dumain, G value groun, totally ordered K quot. fele of R

$$
\begin{aligned}
& K O G \quad \text { s.t. } \\
& V(x y)=v(x)+v(y) \\
& v(x+y) \geq \sin ^{-}(v(x), v(y)) \text { if } x+y \neq 0
\end{aligned}
$$

$$
R=\{x \in K-0 ; v(x) \geq 0\} \cup\{0\}
$$

$C \operatorname{lam} R$ lucal, max ide.l m $E\{x \in K: v(x)>0\} v\} 0$ Pf M ided $L_{c} t ~ 0 f a c R, O \neq b \in M$, show ab em \quad (aimiarly clores under
 $S_{\operatorname{cec}} R=\{(0), m\}$ Spul $K=\left\{(-1) \quad t_{0}=m \quad t_{i}=\operatorname{lon}\right.$.

