Some Material From Math 511, Introduction to Algebrak Geometry [it, Ch 1$]$

$$
\begin{aligned}
k=\bar{k} \mathbb{A}^{n}=\mathbb{A}_{k}^{n}=\left\{\left(a_{1}, \ldots y a_{n}\right) \mid a_{c} c k\right. & \} \\
y=x^{2} & \\
t & \\
& \\
& \left(t, t^{2}, t^{3}\right) \\
& I=\left(y-x^{2}\right) \\
&
\end{aligned}
$$

twisted cable curve
Morphism $Q: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{3}$
Regular $f\left(n X \rightarrow n / \mathbb{A} \quad Q(t)=\left(t, t^{2}, t^{3}\right)\right.$

$$
\begin{aligned}
& x y=0 \\
& \text { reduclble, singular } \\
& y=x^{2} \\
& \text { irreducible, a lariety } \\
& \text { nonsingular, nonsingular } \\
& \text { varcety } \\
& \mathbb{P}^{n}=\mathbb{P}_{k}^{n}=\left\{\left(x_{0}, \ldots, x_{\text {pqq }}\right) \in k^{n+1}-0\right\} / x \sim \lambda x \\
& \lambda \in k^{*}=k-6 \\
& \mathbb{A}^{n} \subset P^{n} \quad\left(x_{1}, \ldots, x_{n}\right)<\left(l, x_{1}, \ldots x_{n}\right) \\
& y=x^{2} \quad y z=x^{2} \\
& h=m \cdot g e^{n z o u s}
\end{aligned}
$$

Bézout', Thy: Plane curves of dejree d and with no common components meet in de point e, including multiplicity,

Generalizes to higher dinensoi

$$
\begin{aligned}
& \mathbb{P}^{\prime} \xrightarrow\left[\left(x_{0} x, x_{2} x_{j},\right]{\longrightarrow}(s, t) \stackrel{\mathbb{P}^{3}}{\longrightarrow}\left(s^{9}, s^{2} t, s t^{2}, t^{3}\right)\right. \\
& I=\left(x_{0} x_{2}-x_{1}^{2}, x_{1} x_{3}-x_{2}^{2}, x_{0} x_{3}-x_{1} x_{2}\right)
\end{aligned}
$$

Not a complete intersection - need more thar 2 equations. If we use only first two equations, get extraneous line $x_{1}=x_{2}=0$, ie. reducible Consistent with Bezzoat: $2 \cdot 2=3+1$

A major problem in algebras geometry Classify all algebraic varieties

Solved for nonsizular curves
Still unsolved for nonsizular surfaces!
Moduli problem

